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Summary

Computations were performed to determine the
effect of an overall bow-type initial imperfection on
the relability of structural panels under combined
compression and shear loadings. A panel’s reliability
1s the probability that it will perform its intended
function—in this case, carry a given load without
buckling or exceeding in-plane strain allowables. For
a panel loaded in compression, a small initial bow
can cause large bending stresses that reduce both the
buckling load and the load at which strain allowables
are exceeded; hence, the bow reduces the reliability
of the panel. In this report, analytical studies on
two stiffened panels quantified that effect, which was
found to be substantial.

Introduction

Numerous studies have shown that initial geo-
metric imperfections can substantially reduce the
load-carrying ability of thin plate and shell struc-
tures when the loading involves compression (e.g.,
refs. 1-6). Imperfections can have an even greater ef-
fect on these plate and shell structures if the struc-
tures are highly optimized without accounting for the
imperfections. (Highly optimized structures can have
substantial performance losses under any off-design
condition.)

A smaller number of studies have used a proba-
bilistic approach to relate the statistical nature of the
imperfection (for example, its shape, magnitude, and
distribution) to the probability that the structure can
carry a given load. That probability is denoted the
releability of the structure. Many of these studies are
cited and summarized in references 7-9.

The type of imperfection studied with a proba-
bilistic approach in references 7-9 is a random non-
symmetric imperfection in circular cylindrical shell
structures. Test data are used to obtain the statistics
of the imperfections.

A different type of common initial geometric im-
perfection is an overall bow in a stiffened panel. An
analysis procedure for calculating the effect of a bow
on the stresses in and buckling loads of stiffened
compression panels is described and demonstrated in
references 10-15.

In this report, probabilistic concepts are com-
bined with the analysis procedure of refer-
ences 10-15. The objectives are (1) to establish the
effect, of a bow-type imperfection on the structural
reliability of stiffened panels, (2) to assess the sen-
sitivity of the reliability to accurate specification of
the bow statistics, and (3) to illustrate the approach

used to compute the reliability. The size of the bow
is the single random variable. The probability that
a panel with this random bow can carry a specified
load is the reliability of the panel at that load.

Two panels are considered. These panels are
designed deterministically for minimum weight un-
der the assumption that they are flat (i.e., with-
out a bow). Both panels are blade-stiffened, made
of graphite-epoxy, and designed for combined com-
pression and shear loadings. However, one panel is
designed to carry a greater load than the other.

First, the analysis-design procedure is summa-
rized. Next, the design studies leading to the two
minimum-weight panels are described. Then, the ef-
fect of a bow on the load-carrying ability of these
two panels is discussed; failure mechanisms consid-
ered are buckling and excessive strain at the ply
level. Finally, for various distributions of the bow,
the reliability of the two panels is presented and dis-
cussed. Appendixes A—D contain additional expla-
nations of the analysis-design procedure, tabulated
values of failure load versus magnitude of the bow,
example calculations, and information on the distri-
bution functions and related statistical parameters
for the distributions used in this report.

Symbols

A area

b depth of blade

¢ distance from neutral surface of
panel to location where strain is
calculated

Dy smeared orthotropic bending
stiffness

Eq, By Young’s modulus of composite ply
in fiber direction and transverse to
fiber direction, respectively (table I)

ET longitudinal extensional stiffness of
panel

€ overall bow 1n panel, measured at
panel midlength

€; values of e for a given value of F

€; standardized values of e;

€max maximum allowable value of e

F ratio of failure load to design load,
defined in equation (Ab)

Fy specified value of F



G2 in-plane shear modulus of composite
ply in coordinate system defined by
fiber direction (table I)

L panel length

M bending moment caused by bow in
panel

M, applied bending moment used in
figure Al

N(p,0)  normal (Gaussian) distribution;
w18 the mean, o is the standard
deviation

Ny longitudinal compressive load per

unit length

Nog Euler buckling load of panel

Ney shear load per unit length

Ny transverse compressive load per unit
length

n integer; number of buckling half-
waves in x-direction

P probability

Q@ lateral pressure loading on panel in
figure Al

R reliability; probability that struc-
ture can carry a specified load

t; ply thicknesses

X, Y. 7 Cartesian coordinate axes defined in
figure 1

x,Y,z coordinate directions

o strain in z-direction

) ply orientation angle

A half~wavelength of buckling mode in
x-direction

7 mean value of a distribution

112 Poisson’s ratio of composite ply in
coordinate system defined by fiber
direction (table I)

o standard deviation of a distribution

standard cumulative distribution
function

Summary of Analysis-Design Procedure

The two composite panels in this report were ob-
tained from a computer program for analyzing and

2

sizing uniaxially stiffened composite panels. The
computer program, denoted PASCO (refs. 12-16),
incorporates an eigenvalue buckling analysis, a stress
analysis, and an optimization procedure. The opti-
mization procedure adjusts the values of design vari-
ables (ply thicknesses and plate widths) to obtain the
minimum-weight panel design that, for a specified
design load, does not violate behavioral constraints.
For this case, the constraints prevent buckling and
excessive strains. All calculations in this analysis-
design procedure are deterministic.

The PASCO program is also used to calculate the
response of these two composite panels when they
have an initial bow-type imperfection. When a panel
is compressed, the bow causes a bending moment
that affects the stress distribution. Depending upon
whether the bow is positive or negative, the bending
moment causes additional compressive stresses in the
skin or in the extreme fibers of the stiffener, respec-
tively. These additional stresses generally reduce the
buckling load. A panel with a bow and with the
loading considered in this report is shown in figure 1.
The bow is in the shape of a half-sine wave along
the length. The size of the bow at panel midlength
(x = L/2)is denoted e. In figure 1, e is positive. Ad-
ditional information on the analysis-design procedure
is presented in appendix A.

Positive bow shown

Figure 1. Stiffened panel with initial bow, applied loading,
and coordinate system.

Design Studies—No Initial Bow

Two rectangular, graphite-epoxy, blade-stiffened
panels were designed to carry combined compression
and shear loadings. The panels were designed as if
they were perfectly flat. The main difference between
the two panels is the intensity of the loading; one
panel is lightly loaded, the other is heavily loaded.
The section that follows describes the general con-
figuration of the two panels. The second section



describes the design requirements. The third sec-
tion describes the final designs. Graphite-epoxy ply
properties used in the analysis are given in table 1.

Table I. Properties of Unidirectional Graphite-Epoxy
Material Used in Calculations

Symbol Value
Ey 21.0 x 108 psi
B 2.1 % 10% psi
G 1.0 x 10° psi
112 0.38

General Panel Configuration

The graphite-epoxy panels contain six equally
spaced stiffeners, are 30 in. long, and are simply sup-
ported on all four edges. The overall shape and load-
ing are shown in figure 2. For each panel, the skin,
blade, and attachment flange are balanced symmet-
ric laminates made up of £45°, 0°, and 90° plies.
Fiber orientation is indicated by the angle 8, which
1s measured with respect to the z-direction as shown
in figure 2. The panels are intended to represent
the design shown in figure 3, in which a represen-
tative portion of the laminated panel skin and the
laminated blade with attachment flange are shown
separated from one another.

“x

L=30in. 7 N R
~ .

N Xy NXy
L e
//
4
Ny 77 X e
X //

Figure 2. Overall shape and loading for two graphite-epoxy
panels. Panels are designed as if flat.

The mathematical model used for analysis and de-
sign is somewhat idealized compared with the design
concept shown in figure 3. The mathematical model
of the skin is the same as in figure 3, but the region
where the blade joins the attachment flange is dif-
ferent. The mathematical model, including the ply
orientation angles and stacking sequence, is shown
in figure 4. Seven ply thicknesses (¢;,i =1,2,...,7)
and the depth b of the blade serve as design variables.
Ply thicknesses are assumed to vary continuously.

Blade with
attachment flanges

L Extra thickness of 0°
plies at center of blade

Figure 3. Design concept for skin, blade, and attachment
flanges. Angles indicate ply orientation. Not to scale.

i t; +45°
Skin & ase
27

tz 90°

90°

Blade with
attachment flanges

— t7 O0

Figure 4. Mathematical model of design concept of figure 3.
Used for analysis and sizing. Design variables b and ¢; are
shown. Anglesindicate ply orientation for each ¢;. Not to
scale.

Design Requirements

The design requirements are the loading and the
constraints. The loading is combined in-plane com-
pression N, and in-plane shear N;,. Constraints are
placed on buckling and in-plane strains at the ply
level. For manufacturing and cost considerations, the
attachment flange width and the stiffener spacing are
fixed values. The design requirements for the two
panels are as follows:



Lightly loaded panel

e Design load: N = 3000 Ib/in. and
Ny = 1000 Ib/in.

e Requirements on dimensions are given in
figure 5.

Heavily loaded panel

e Design load: N; = 25000 Ib/in. and
Ny = 5000 Ib/in.

e Requirements on dimensions are given in
figure 6.

Both panels

e Panels carry their design load without
buckling.

e Panels carry design load without exceeding
ply-level, in-plane strains of £0.005 in both
the fiber direction and transverse to fiber
direction, and £0.01 shear strain—in any ply.

<

5.0
<—1.5—>|<—1.0—>|

Design variable

¢

Figure 5. Design requirements on dimensions of cross section

for lightly loaded panel. One repeating element is shown.
Dimensions are in inches.

< 6.0 >

~<—15—>|=<—15—>]

— i

—

Design variable

Figure 6. Design requirements on dimensions of cross section
for heavily loaded panel. One repeating element is shown.
Dimensions are in inches.

Final Designs

The designs obtained using PASCO are defined
in figures 7 and 8 and table II. Dimensions within
figures 7 and 8 are to scale. Only a repeating element
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1s shown. As stated earlier, the panels consist of six
equally spaced stiffeners and are 30 in. long. Because
of the design requirements on stiffener spacing, the
lightly loaded panel is 30 in. wide; the heavily loaded
panel is 36 in. wide.

Table II. Design Variables (Ply Thicknesses ¢; and Blade
Depth b) for Two Minimum-Weight Designs

Value of design variables, in.

Ply angle Lightly Heavily

Design 8 for loaded loaded
variable t;, deg design design

t1 +45 0.018899 0.026711

to 0 .002566 .012936

t3 90 .001104 .001425

t4 +45 .006315 .013404

ts 0 .019658 096217

ts 90 ¢.001000 ¢.001000

t7 0 .038390 066144

b 1.448772 2.035960

%Lower bound.

For both panels the skin consists mainly of £45°
plies with a small amount of 0° and 90° material
in the center. Also, the attachment flange and blade
consist mainly of 0° plies. The thicknesses of the plies
at each angle are indicated in figures 7 and 8 by the
various layers in each plate element. To account for
bending moments produced by the bow, the blade
is modeled in four segments, each b/4 deep, and
each capable of carrying a different axial load. (See
figs. 7 and 8.) The bending moment is accounted
for (approximately) by the variation in the axial load
among the four segments, the attachment flange, and
the skin (ref. 11). The larger the number of segments,
the better the approximation.

Both panels buckle at the design load; for each
panel, two buckling modes are critical. One of these
two modes has a longitudinal half~wavelength X that
is equal to the panel length L. The other mode has a
longitudinal half-wavelength that is shorter than the
panel length. For the lightly loaded panel, the two
buckling modes are shown in figures 9(a) and 9(b).
Both figures are contour plots of the lateral deflection
of the skin. The A = L mode shown in figure 9(a)
is from the adjusted analysis technique! mentioned

1When calculating the budling load of a finite rectangular
stiffened plate that is loaded by in-plane shear (Ngy), the an-
alyst can generally assume that correct boundary conditions at
the ends of the panel (r = 0, z = L) are more important than
correct boundary conditionsalong the sides that are parallel to
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Figure 7. Final design for lightly loaded panel. One repeating element is shown. Dimensions are in inches.
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Figure 8. Final design for heavily loaded panel. One repeating element is shown. Dimensions are in inches.

in appendix A and described in references 12, 13,
and 16. The mode shape shown in figure 9(b) has a
longitudinal half-wavelength of A = L/5. Although
the buckling mode shape in figure 9(b) does not
satisfy simple support boundary conditions at the
ends of the panel, the buckling wavelength is short
enough for the mode to develop in the center portion
of the panel. For the heavily loaded panel, the two
buckling modes are for A\ = L and A = L/2. In
addition to being buckling critical at the design load,
the heavily loaded panel is also strain critical at the
design load.

the stiffeners. This assessment is particularly trueif the budkling
halt-wavelength in the z-directbn is equalto the panellength I..
In a discrete stiffener solution VIPASA (refs. 17-19), which is
the buckling analysis within PASCO, can account for boundary
conditionsalong the sides of the panel, but the VIPASA program
cannotaccountfor boundaryconditionsalongthe ends. However,
with a smearedstiffenersolution,the panelcanbe rotated90° and
boundaryconditionscan be placedon the ends of the panel. That
smearedstiffenersolution,whichis denoted F oy in referencel3,

is shownin figure 9(a).

The contour plots shown in figure 9 were obtained
with the computer program VICONOPT (refs. 20—
23) which, in many ways, is the successor to the
PASCO program.

Effect of Initial Bow on Failure Load

Both minimum-weight panels described in the
previous section were analyzed under the assumption
that they had various amounts of initial bow. The
bow is in the form of a half-sine wave along the
length. The failure load of the panel is assumed
to be the lower of the buckling load and the load
at which any strain exceeds the corresponding ply-
level allowable strain given in the section “Design
Requirements.” The results for the lightly loaded
panel are shown in figure 10; the results for the
heavily loaded panel are shown in figure 11. In both
figures, the ratio of the failure load to the design load
is shown as a function of e, the size of the bow (fig. 1).
Note that the curves are not symmetric with respect
to the line e = 0.



(a) Mode for which A = L; Buckling load/Design load =
0.99798.

(b) Mode for which A = L/5; Buckling load/Design load =
1.00265.

Figure 9. Buckling mode shapes for flat, lightly loaded panel
under design loading of Ny = 3000 lb/in. and Ngy =
1000 1b/in.

Failure load/Design load
(o)}
I

2 1 1 | | | J
-3 -2 -1 0 1 2 3
Size of bow, e, in.

Figure 10. Variation of nondimensional failure load with ini-
tial bow for lightly loaded panel. For this case, the failure
mode is buckling.

1.0

4 Failure mode

— — — Buckling
Excessive strain

Failure load/Design load
(o2}

2 1 1 1 1 1
-3 -2 -1 0 A 2 3

Size of bow, e, in.

Figure 11. Variation of nondimensional failure load with ini-
tial bow for heavily loaded panel.

When the panel is compressed, the bow produces
large bending strains that are added to the uniform
axial strains of the flat panel. A positive value of €
adds compression to the skin; a negative value of e
adds compression to the tip of the blade. For the
lightly loaded panel (fig. 10), the failure mode is
buckling. For example, at e = —0.1 in., the panel
buckles at about 0.57 times the design load. Both
components of the design load vector are multiplied



by the same factor to obtain the failure load vector,
as shown in equation (1):

N, N, 3000 1710
[Nx] z0.57[N””] :o.57[ ]:[ - ] (1)
Y 1 failure TY ] design 1000 570

For this example of e = —0.1 in., the buckling mode
has a longitudinal half-wavelength of A = /9.

For the heavily loaded panel (fig. 11), the failure
mode is excessive strain (material strength failure).
For reference, the curve for buckling is also shown in
figure 11. At e = 0, buckling and excessive strain
occur simultaneously at the design load. For other
values of e, excessive strain occurs at a lower load
than the buckling load.

Additional information on the analysis of a panel
with a bow is given in appendix A. For both panels,
the variation of the failure load with e is tabulated
in appendix B so that reliabilities can be calculated
for distributions of the bow not considered herein.

Reliability

A structure’s reliability is defined as the proba-
bility that it will perform its intended function with-
out failing. In the present context, the reliability is
the probability that the panel will carry a given load
without buckling or exceeding allowable strains. In
general, to calculate the reliability, two types of in-
formation are needed: first, the relationship between
the failure load of the panel and the values of the ran-
dom variables; second, the joint probability density
of the random variables.

In this report, a single random variable is
considered—the size e of the bow. The first type
of information, the failure load as a function of e, is
obtained with PASCO and is illustrated in figures 10
and 11. In subsequent sections of this report, the
size e of the bow is assumed to have various, speci-
fied probability densities.? This assumption provides
the second type of information.

2In this report, each distribution is assumed. Quantitative
proceduresto help determine the validity of an assumed distri
bution are goodness-of-fit tests. Two examplesare the chi-square
and Kolmogorov-Smirnov tests. In both tests, comparisonsare
made between the observed experimentaldata and the corre-
spondingdata from the assumed theoreticaldistribution. If dif-
ferencesbetweenthe two sets of data are sufficiently small, the
assumeddistributionis accepted. Hypothesistest proceduresare
used to determinea “sufficientlysmall difference” In such pro-
cedures,an acceptabledifferenceis defined based on the number
of samplesin the experimentaldata and on the significancelevel

that is adopted.In the final analysis, engineeringjudgment as

In the first section below, e is assumed to have a
normal distribution; the reliability of the two panels
is examined for three values of the standard devia-
tion. In the second section, the distributions consid-
ered for e are a normal distribution and two extreme
value distributions, all with the same mean and same
standard deviation. In the third section, the distri-
butions are similar to those in the second section, ex-
cept that the distributions are truncated; a value of e
larger than a specified value is not allowed. Studies
are presented that show the effect of these distribu-
tions on the reliability of the two panels. Sample cal-
culations that illustrate reliability concepts are given
in appendix C.

Bow With Normal Distribution

In this section, the value of e is assumed to have
a normal distribution N (g, ), where p is the mean
and ¢ is the standard deviation. For this report,
the mean value of e is taken to be zero; that is,
= 0. In this section, three values of the standard
deviation are considered: ¢ = 0.01, 0.02, and 0.05 in.
The probability density functions for these three
distributions of e are shown in figure 12.

50, . .
Standard deviation, in.
0.01
40 A e .02
2 N\ _____ 05
= .
c
3 30
>
2 20}
o
o
o
10}
-1 i - \\“T~—.. L )

-l of ALY
-(.)20 -15 -10 -.05 0 .05 .10 .15 .20
Size of bow, e, in.

Figure 12. Probability densities for three normal distributions
of bow.

The reliability of the lightly loaded imperfect
panel at various load levels is presented in figure 13.
The reliability of the heavily loaded imperfect panel
is presented in figure 14. (For reference, the re-
liability of a perfectly flat panel is also shown in
figs. 13 and 14.) At low load levels (Applied load/
Design load < 0.4), the reliability is approximately
unity for both imperfect panels, regardless of the

well as quantitativemeasuresof goodnessof fit are used to define
the distribution(refs. 24-27).
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Figure 13. Reliability of lightly loaded panel versus ratio
of applied load to design load for three distributions of
initial bow. The probability densities for these three
distributions are given in figure 12. Reliability of perfectly
flat panel is also shown.

1.0 =
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2 6r
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Applied load/Design load

Figure 14. Reliability of heavily loaded panel versus ratio
of applied load to design load for three distributions of
initial bow. Probability densities are given in figure 12.
Reliability of perfectly flat panel is also shown.

distribution of the bow. For higher load levels, the
reliability decreases and depends strongly upon the
distribution of the bow. When the applied load is
equal to the design load, the reliability is zero.

The reliability curves in figures 13 and 14 illus-
trate the importance of accounting for a bow. Even

8

with a bow standard deviation of only 0.01 in., the
reliability is substantially reduced compared with a
perfectly flat panel. These results also indicate the
sensitivity of the reliability to the statistical param-
eters, such as the standard deviation.

The curves can be interpreted in the following
way. Assume that the goal is to have a relia-
bility of 0.99 after accounting for the bow. As-
sume, also, that the design process ignores the bow
but uses a knockdown factor to account for uncer-
tainty. For the heavily loaded panel with a bow stan-
dard deviation of 0.05 in., the reliability is 0.99 at
Applied load /Design load = 0.55. Thus, the required
knockdown factor k£ would be 0.55. Equivalently, the
bow can be ignored but the design load increased
by 82 percent (1/k = 1.82). If, for example, a 50-per-
cent higher load is used, the reliability is only 0.85
(R = 0.85 at Applied load /Design load = 0.66). Sim-
ilar results occur for the lightly loaded panel.

Bow With Normal and Extreme Value
Distributions

In this section, a comparison is made between the
reliabilities of panels with three different distribu-
tions of the bow: a normal distribution, a type 1
asymptotic distribution of maximum extreme values
(maximum extreme value distribution), and a type I
asymptotic distribution of minimum extreme values
(minimum extreme value distribution).3 Parameters
that define the three distributions are selected so that
all three distributions have the same mean and same
standard deviation (¢ = 0 in. and ¢ = 0.02 in.).
Only the higher statistical moments differ. The prob-
ability density functions for the three distributions
are shown in figure 15. The statistical parameters
for these distributions are given in appendix D along
with the distribution functions.

Results for the lightly loaded panel are presented
in figure 16 and for the heavily loaded panel in
figure 17. In each case only the high-reliability

SExtreme value distributions are important for engineering
applications These distributionscan be used to describe the
maximumor minimum values from random phenomenasuch as
wind speed, wave heights, and rainfall. The phenomenahave
distributions,but only the maximumor minimum values of the
phenomenaare of interest,not the average or typical values. If
a phenomenonhas a distributionwith an exponentiallydecaying
tail in the directionof interest (to the right is maximum, etc.),
the correspondingextreme value distributionis denoted type I.
A normal distributionis an example of a distributionwith ex-
ponentiallydecayingtails in both directions. For informationon

extremevalue distributions,see references26 and 28.
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Figure 15. Probability densities for three distributionsof bow:
maximum extreme value, normal, and minimum extreme
value. Fach distribution has a mean of zero and a
standard deviation of 0.02 in.

portions of the curves are shown. Even though the
means and standard deviations of the imperfections
are equal, the curves in each figure are different.
These differences demonstrate that the reliability of
an imperfect panel depends upon the details of the
probability density of the imperfection. The results
can be interpreted in the following two ways.

First, suppose that three panel fabrication pro-
cesses produce the same mean and standard devia-
tion for an imperfection. The results indicate that,
with these limited data, we cannot assume that the
three fabrication processes are equivalent. The dis-
tributions could differ; therefore, one of the processes
could be considerably better because it could produce
panels with a higher reliability than the other two.

Second, suppose only one fabrication process ex-
ists and only the first two moments of the imper-
fection (the mean and the standard deviation) are
known. To calculate the performance of the pan-
els, the analyst must assume the distribution of the
imperfection; therefore, the higher moments are as-
sumed. The results indicate that the calculations
will be sensitive to the assumptions. The common
assumption of a normal distribution can be conser-
vative or unconservative.

Bow With Truncated Normal and
Truncated Extreme Value Distributions

In practice, quality control procedures would
eliminate panels with a bow larger than a specified

1.0 R

Distribution
Maximum
2 | e Normal
2 g Minimum
©
©
14
8 | | ]
"5 6 7 8

Applied load/Design load

Figure 16. Reliability of lightly loaded panel versus ratio of
applied load to design load for three distributions of bow.
Probability densities are given in figure 15.
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Applied load/Design load

Figure 17. Reliability of heavily loaded panel versus ratio of
applied load to design load for three distributions of bow.
Probability densities are given in figure 15.

maximum value. For that reason, the large tails on
the probability density functions (e.g., fig. 15) are un-
realistic. Using truncated distributions is one way to
study panel reliability and account for such quality
control measures.

In this section, the distributions of the bow are
similar to those of the previous section, except that

9



the distributions are truncated. For these studies,
the absolute value of the maximum bow (emayx) is se-
lected to be 0.04 in. Because the standard deviations
of the original untruncated distributions are 0.02 in.,
the maximum bow is +2¢ of the original, untrun-
cated distributions. The probability density func-
tions for these distributions are shown in figure 18.

30 Distribution
Trunc. maximum
------- Trunc. normal
------ Trunc. minimum
2 201
2]
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(]
©
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©
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Z08 -.04 0 .04 .08

Size of bow, e, in.

Figure 18. Probability densities for three truncated distribu-
tions. Original probability densities are given in figure 15.
Truncations occur at e = £0.04 in.

The reliability of panels with these distributions
of e is shown in figures 19 and 20. (The lightly loaded
panel is in fig. 19 and the heavily loaded panel is in
fig. 20.) For comparison, the figures also include the
reliabilities of the panel if the distributions are not
truncated.

The results indicate that if the original distribu-
tion is minimum extreme value, an emax of +20 pro-
vides panels that are substantially more reliable. If
the distribution is normal, an emax of £20 provides
panels that are moderately more reliable. If the dis-
tribution i1s maximum extreme value, an epax of £20
has negligible effect on panel reliability. The results
also indicate that even with truncated distributions,
the relhiability is sensitive to details of a distribution,
but less sensitive for the truncated distribution than
for the untruncated one.

Concluding Remarks

Analytical studies were conducted on two
minimum-weight, stiffened panels—designed as if
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Figure 19. Reliability of lightly loaded panel for original and
truncated distributions of figures 15 and 18, respectively.
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Figure 20. Reliability of heavily loaded panel for original and
truncated distributions of figures 15 and 18, respectively.

they were flat—to determine the extent to which a
small overall bow could degrade their reliability. The
loading case was combined compression and shear.
The degradation in reliability was found to be sub-
stantial. This report also demonstrates the impor-
tance of accurate specification of bow statistics and
illustrates an approach used to make reliability cal-
culations.

Just as a bow-type imperfection increases the
bending stresses and reduces the buckling load of a



panel, it also reduces the reliability of a panel. In
one case, if the bow has a normal distribution with
a mean of zero and a standard deviation of 0.05 in.,
a panel designed as if it were flat would require a
design safety factor of about 1.8 to achieve a reliabil-
ity of 0.99. Accounting for additional uncertainties
would require a larger safety factor.

To determine the sensitivity of the reliability to
details of the bow statistics, studies were made with
three distributions of the bow. All distributions had
the same mean and same standard deviation. Only
the higher statistical moments differed. The three
distributions were normal, maximum extreme value,
and minimum extreme value. Although the proba-
bility density functions had the same general shape,
the panel reliabilities were quite different. These dif-
ferences indicate that the reliability is sensitive to
the details of the bow distribution. This sensitivity
should be taken into account when engineers make
agsumptions regarding the probability density of the
bow and select a fabrication process.

Good quality control would eliminate panels with
a bow larger than a specified maximum value. To ex-
amine the effect of quality control, panel reliability
was studied for bows with truncated distributions.
The basic distributions were the same three types
mentioned above. The maximum value of the bow
was set at £0.04 in., which, for the example selected,
is twice the standard deviation of the untruncated
distributions. For two distributions (minimum ex-
treme value and normal), truncating the distribu-
tions caused the reliability to improve; for the re-
maining distribution (maximum extreme value), the

reliability was unchanged. The reliability is less sen-
sitive to the statistical details of the imperfection
when the distributions are truncated.

Several reliability computations are illustrated in
appendix C. With a single random variable, as is the
case in this report, the probabilistic computations are
straightforward. They are included for illustrative
purposes.

The studies emphasize the need for engineers to
account for imperfections when they design struc-
tural members. Probabilistic methods can help ac-
count for imperfections when these imperfections
contain uncertainties. One approach is to consider
the imperfections as random quantities with statis-
tical distributions. The structure could be designed
to minimize the weight or cost and still meet a spec-
ified reliability, or the structure could be designed to
maximize the reliability for a given cost or weight.
Because an increase in quality control could provide
a decrease in 1imperfections, which in turn, could al-
low a decrease in structural weight, cost compar-
isons could include quality control and structural
weight. For example, cost trade-offs could be per-
formed between two equally reliable structural de-
signs: a lightweight design that requires considerable
quality control and a heavier design requiring less
quality control.

NASA Langley Research Center
Hampton, VA 23681-0001
October 27, 1992
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Appendix A
Analysis and Design Procedures

Buckling Analysis

The buckling analysis used to obtain the results
presented in this report is contained in the PASCO
computer program, which analyzes and sizes uniax-
ially stiffened (prismatic) composite panels subject
to the loading shown in figure A1. The PASCO pro-
gram (refs. 12-16) incorporates an earlier computer
program, VIPASA (refs. 17-19).

Figure Al. Stiffened panel with initial bow, applied loading,
and coordinate system. Figure indicates analysis capabil-

ities of PASCO.

The analysis treats an arbitrary assemblage of
plates, each with a combined in-plane loading of N,
Ny, and Ngy. The response of each plate element
making up the stiffened panel is obtained from an ex-
act solution to the thin-plate equations. The analysis
connects these individual plate elements and main-
tains continuity of the buckle pattern across the in-
tersection of neighboring plate elements. All quanti-
ties that define the analysis problem (the panel cross
section, loading, boundary conditions, etc.) are as-
sumed to be uniform in the z-direction (fig. Al). The
buckle patterns in the x-direction are taken to be sine
waves whose half-wavelengths A are fractions (1/n)
of the panel length (e.g., A = L, L/3, L/9, etc.). For
orthotropic panels loaded only by N, and N, the so-
lution is exact for panels that are simply supported
along the edges r =0 and « = L.

The VIPASA program underestimates the buck-
ling load when the loading involves shear and the
buckling mode is skewed, with a longitudinal buckle
length equal to the length of the panel (A = L). The
PASCO program contains an approximate approach,
the adjusted analysis technique, to overcome that

12

limitation. The basis for the limitation in VIPASA
and the adjusted analysis technique in PASCO are
described in reference 16. Because the loadings con-
sidered in the present report involve shear, the ad-
justed analysis technique 1s used.

Analysis for Initial Bow-Type
Imperfection

The VIPASA analysis (hence, the PASCO anal-
ysis) cannot treat panels that are curved in the -
direction. The approach used in PASCO is to treat
the panel as flat (which allows boundary conditions
to be imposed on the sides), but to use a stress dis-
tribution for a panel with a bow. The bow is in the
shape of a half-sine wave down the length. The fol-
lowing description of the analysis technique is taken
verbatim from reference 11:

The approach used here to account for the
effect, of an initial bow in the panel is the
same as that used in reference 2 [10] (with
appropriate changes to account for laminated
walls). The panel is assumed to have the
initial bow shown in figure 1 [A2]. The stresses
acting on the panel cross section are taken
to be the sum of the stress from Ny and the
stress resulting from the moment caused by
the bow. In terms of the longitudinal strain
£y, this gives

Ny M-c
Ex = ——

 ET Dy

(1[A1])

The moment varies over the length of the
panel. At the midlength of the panel the
moment is largest and is given by

M= e (2[A2])
-

in which Ny is the Fuler or wide-column
buckling load of the panel. The denomina-
tor in equation (2[A2]) gives the nonlinear ef-
fect of the deformation growing with the ap-
plied load. Except for one wavelength, the
buckling calculations are made assuming that
the midlength stresses from equations (1[A1])
and (2[A2]) are the stresses over the entire
length of the panel. The exception is the buck-
ling mode having a half-wavelength A equal to
the panel length L. For that case, the mo-
ment M is considered to be zero. The initial
bow in the panel does not, therefore, directly
affect the A = L buckling load.



Positive bow shown

Figure A2. Panel with initial bow.

As pointed out in reference 13, strictly speak-
ing, equations (1[A1]) and (2[A2]) are appropriate
only when N, is the sole in-plane load. However,
in PASCO these equations are applied to problems
with combined loads. For the combined load cases
of Ny and Ng, considered in the present report,
equation (2[A2]) is rewritten as

N,
M= (A3)
L—y
where the parameter v is defined as
F
1= F (Ad)
|A:L
in which F 1s a scalar defined by
) W @
TY 1 design 7Y Ifailure

The design load vector on the left in equation (A5)
1s scaled up or down with the parameter # to obtain
that combination that causes buckling or strains that
exceed allowables. The quantity F'|y—7 is the value of
F for the lowest buckling load for which the buckling
half-wavelength X is equal to the panel length L. In
figures 10 and 11, the ratio of failure load to design
load is the same as the parameter F'.

The above approach for treating a bow is an ap-
proximate one that captures the main features of the
physical problem. Because it is computationally effi-
cient, the approach can be used for optimization. It
1s also reasonably accurate, as is seen in reference 12,
where Anderson and Stroud compare analysis with
test results.

Sizing

The computerized structural sizing approach used
in PASCO is based on nonlinear mathematical
programming techniques. The computer program
CONMIN (refs. 29 and 30) is the optimizer within
PASCO. Sizing variables are automatically adjusted
to obtain the design that minimizes an objective
function subject to a set of inequality constraints.
Taylor series expansions of the constraints are used
to improve computational efficiency.

For the studies presented in this report, the sizing
variables are widths of plate elements and thicknesses
of composite plies that make up the plate elements;
the objective function is the panel weight. Inequality
constraints are placed on buckling loads and in-plane
strains in each ply. The strain constraints are placed
on in-plane shear strains and on strains that are
tangential and normal to the fiber direction—in each

ply.
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Appendix B

Failure Load as a Function of Size of Initial Bow

For the two panels discussed in the section “Final Designs,” the failure load as a function of the size of the
initial bow is given in tables BI and BII. Numerical values are provided so that reliabilities can be calculated
for distributions of the bow not considered herein.

For the lightly loaded panel, table BI gives the ratio of failure load to design load (F in eq. (A5)) as a
function of size e of bow. Failure for this panel is buckling. These data are used to produce the curve in
figure 10.

Comparable data for the heavily loaded panel are given in table BII. Failure for this panel is excessive strain
(material strength) in the prebuckling stress state. These data are used to produce the lower curve in figure 11.
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Table BI. Ratio of Failure Load to Design Load as Function Table BII. Ratio of Failure Load to Design Load as Function

of Size of Bow for Lightly Loaded Panel of Size of Bow for Heavily Loaded Panel
[For this panel, failure is buckling] [For this panel, failure is excessive strain]
Failure load Failure load
Design load Design load
Bow, e, in. Negative bow Positive bow Bow, e, in. Negative bow Positive bow
0.000 0.9980 0.9980 0.000 1.001 1.001
.001 .9552 19959 .001 .9453 .9654
.002 19348 19938 .002 19234 L9513
.003 .9190 19919 .003 .9070 .9406
.004 .9054 .9898 .004 .8934 L9317
.005 .8934 L9878 .005 .8816 19239
.006 .8827 .9859 .006 .8710 9170
.007 .8729 19839 .007 .8614 9103
.008 .8639 19820 .008 .8526 .9043
.009 .8555 19803 .009 .8444 .8992
.010 .8476 L9783 .010 .8367 .8940
012 .8331 9747 012 .8226 .8845
.014 .8199 9713 .014 .8099 .8759
016 .8078 L9678 016 7982 .8679
.018 7966 .9642 .018 L7874 .8604
.020 L7861 .9609 .020 7773 .8535
.025 L7625 .9528 .025 7546 8377
.030 7417 .9450 .030 7348 .8236
.035 L7231 L9375 .035 7170 8110
.040 L7062 .9303 .040 7008 7993
.045 .6906 19234 .045 .6861 7886
.050 6763 9166 .050 6723 7786
.055 6627 9101 .055 .6596 L7691
.060 .6500 .9038 .060 6477 L7603
.065 .6381 .8977 .065 .6365 L7519
.070 .6269 .8917 .070 .6259 7438
075 6163 .8859 075 .6159 L7362
.080 .6062 .8802 .080 .6064 7289
.085 .5966 8747 .085 .5973 L7219
.090 5874 .8693 .090 .5886 L7152
.095 5786 .8641 .095 .5803 7087
.100 5702 .8589 .100 5724 7024
120 .5398 .8395 120 5435 6794
.140 5134 .8215 .140 5185 .6589
.160 4901 .8047 .160 4963 .6405
.180 4694 L7890 .180 4765 6237
.200 4508 7741 .200 4586 .6083
.220 4338 L7600 .220 4424 .5940
.240 4183 7465 .240 4275 .5807
.260 4041 7337 .260 4137 .5683
.280 .3910 7216 .280 4010 .5566
.300 3788 L7099 .300 .3892 .5456
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Appendix C

Reliability and Sample Calculations

The approach used to calculate the reliability is
based on the definition of the probability density
function. The only random variable is the size e of
the initial bow. For these sample calculations, the
value of e is assumed to have a normal distribution
N(p,0), where p is the mean and o is the standard
deviation. For all studies in this report, u = 0;
for these sample calculations, ¢ = 0.05 in. The
probability density function for this distribution of e
is shown in figure C1.

»
I

Probability density
D
T

Size of bow, e, in.

Figure C1. Probability density for normal distribution of
initial bow. g = 0; ¢ = 0.05.

The reliability of the panel at a specified applied
load 1s the probability that the panel failure load
is equal to or greater than that specified load. In
a case involving a single applied load, such as N,
this definition of reliability is clear. However, in a
case involving combined loads, such as Ny and Ny,
the term fazlure load can be ambiguous; various
combinations of applied load can cause failure. In
this report, all combinations of applied load are
obtained by scaling the design load vector. The
scale factor F' (eq. (Ab)) is the single parameter that
defines the intensity of the applied load that causes
failure. Based on that fact, the definition of panel
reliability given above can be restated in terms of F'
as follows: the reliability R at a specified load Fg is
the probability P that the panel’s failure load F is
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equal to or greater than that specified load Fs. This
definition of reliability can be expressed as

R(Fy)=P(F > F) (C1)

Because the relationship between e and F is
known or can be computed (figs. 10 and 11 and ta-
bles BI and BII), the probability that the failure load
is equal to or greater than a specified load can be con-
verted to the probability that the random variable e
takes on a value within a certain range of values.
That is,

P(F > Fs)=P(eg < e < ey) (C2)

Furthermore, because e has a specified distribution—
in this case a normal distribution—the right side of
equation (C2) can be evaluated in a straightforward
manter.

A graphical interpretation of the evaluation
method is illustrated in figures C2(a) and C2(b)
(adapted from fig. 5.19 in ref. 24). The failure curve
for the lightly loaded panel is shown in figure C2(a);
the distribution of e for & = 0.05 in. is shown in fig-
ure C2(b). The values of e for the upper figure are
aligned with those of the lower figure. Based on the
definition of the probability density function, the re-
liability of the panel at F' = 0.80 (for example) is
equal to the shaded area in figure C2(b).

The dashed line at F = 0.80 intersects the fail-
ure curve at e; = —0.01739 in. and ey = 0.1660 in.
(These two values of e and the four values given in
eq. (C8) were obtained by a linear interpolation be-
tween data points given in table BI, not from graphs.)
The area of the shaded region can be calculated by
first transforming e; and e to standardized vari-
ables €1 and €5 associated with a standard normal
distribution N(0,1) so that

e —p —001739-0
= = = —0.34
2 - i 0.3478  (C3)

eg — 4 0.1660 -0
= = =3.320 C4
o 0.05 (C4)
Letting ® denote the standard cumulative distri-
bution function, the area A of the shaded region is

given by

3l
©o

A= (7)) - 0 (m) (C5)

The function @ can be evaluated from a table for a
standard normal distribution function (see, for exam-
ple, section 3.2.1 of ref. 25) or with a calculator that
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Figure C2. Graphical interpretation of procedure for calculating reliability at a specific load (figs. C2(a) and (b)) and probability
of failure between two specificloads (figs. C2(c) and (d)) for lightly loaded panel with a bow probability density of N (0.0, 0.05).

has a statistical mode. For this example, calculations
give
Pleg <e<e)=A=P(e2) - 2 (E1)
= ®(3.320) — B (—0.3478)
= 0.99955 — 0.36400
~0.64 (C6)

Therefore, the reliability of this panel at a loading

of
Ny Ny 3000 2400
= =0.80 =
|:ny:| applied |:ny:| design |:1000:| |: 800 :|
(C7)
is R(0.80) ~ 0.64. Thus, if many such panels are

involved, approximately 64 percent of them survive
at this load level.

Based on the same approach described above, a
histogram that indicates the frequency distribution
of F' can be generated. For example, the approach
used to calculate the probability that the panel will
fail in the range 0.80 < F' < 0.85 is illustrated in
figures C2(c) and C2(d). The sum of the areas of the
two shaded regions gives the desired probability.

The intersections occur at

e1 = —0.01739
g = —0.009696
(C8)
es = 0.1092
eq = 0.1660
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The corresponding standardized variables are cal-
culated to be

e1 = —0.3478
ey = —0.1939
(C9)

e3 = 2.184
€4 = 3.320

The total shaded area A is given by

A= (52) — @(51) —+ @(54) — @(53)
= 0.42313 — 0.36400 4+ 0.99955 — 0.98552
= 0.07316 (C10)

Thus, approximately 7.3 percent of these panels fail
in the range 0.80 < F < 0.85. An alternate way
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to interpret the above calculation is to note that
P(0.80 < F < 0.85) = R(0.80) — R(0.85).

This approach can also be used to calculate the
probability density function for failure. The prob-
ability density is given (in this case) by —dR/0F,
which can be evaluated with the finite difference ap-
proximation —AR/AF. The quantity AR is the
change in R between two values of F' and is given
by equation (C10) with a change in sign. The quan-
tity AF is the increment in F' used to calculate AR.
By using the data in the previous example, we can ap-
proximate the probability density of F' at F' = 0.825
(the midpoint of the increment) with

AR —0.07316 ~ 146

= 11
AF 0.05 (CL)



Appendix D

Distribution Functions and Related Statistical Parameters

The symbol F is the traditional symbol used to denote the cumulative distribution function. That is the
way 1t 1s used in this appendix, but in this appendix only. In all other portions of this report, the symbol F' has
a different meaning, as noted in the list of symbols. Additional information on the distributions summarized
in this appendix is given in references 24-28, 31, and 32.

Normal Distribution

The two parameters of this distribution are p and o, where ¢ > 0.

For the cumulative distribution function,

_ 1 * 2 2
F(x)_m/_oo exp|~ (6 - )? /207 dt (—o0 < 2 < o0) (D1)
For the probability density function,
f()= . exp[f (rfu)z/Zaz] (00 <& < 00) (D2)
o\ 2w

Mean = Mode = Median = pu
Standard deviation = o

For a standard normal distribution, substitute z = (x — p)/o into equations (D1) and (D2). Note that in
equations (D1) and (D3), ¢ is a dummy variable.

For the standard cumulative distribution function,

O(z)=F(z)= \/LQ_TFV/—ZOO exp(—t2/2) dt (—o0 <z < ) (D3)

For the standard probability density function,

$(2)=f(2) = exp(-2%/2) (—00 < 2 < o) (D4)

Mean = Mode = Median = 0

Standard deviation = 1

Type I Asymptotic Distribution of Maximum Extreme Values
The two parameters of the distribution are v and a, where a > 0.

For the cumulative distribution function,

F(2) = exp{—exp[—a(x — u)]} (o0 <& < 00) (D5)
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For the probability density function,

J(2) = aexp{—a(z —u) — exp[—a(z — u)]} (—o0o <z < 00) (D6)

0.5772
Mean = u+Uoiiz (0.5772 is Euler’s constant)
a

Mode = u

u — [In (In 2)]

Median =

T 1.2825
/6 a

Standard deviation =

Type I Asymptotic Distribution of Minimum Extreme Values
The two parameters of the distribution are u and a, where a > 0.

For the cumulative distribution function,
F(z)=1—exp{—expla(z — u)]} (—o0o < & < 00) (D7)
For the probability density function,

J(x) = aexp{a(z — u) — expla(z — u)]} (o0 <z < 0) (D8)

—0.5772
Mean = e Uolis (0.5772 is Euler’s constant)
a

Mode = u

u+ [In (In 2)]

Median =

m _ 1.2825
a\/f_i a

Standard deviation =

Truncated Distributions

The truncated distributions used in this report are similar to the original distributions with two exceptions.
First, the tails of each probability density function (pdf) are eliminated. Second, the remaining portion of each
pdf is multiplied by a factor greater than unity to account for the “missing” tails. The factor is the reciprocal
of the area under the remaining pdf. As a result, the area under the pdf of the truncated distribution is equal
to unity. The cumulative distribution function is adjusted with the same factor.

For example, in the case of the truncated normal distribution with the truncation at £2o, the factor is
approximately 1.0477. The pdf is given by

0 (r < —20)
f(z)= Z'O—Lg:exp [— (x — u)2 /202] (=20 <2 < 20) (D9)
0 (z > 20)

For the two extreme value distributions, the factor is approximately 1.0449. The pdf’s for the original and
truncated distributions are shown in figure DI.
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Figure D1. Probability density functions for distributions shown in figures 15 and 18.
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